حذف **گ**از H₂S از جریان هوا با استفاده از بستر زئولیت ZSM-5 آغشته با نانوذرات فریک و مگنتیت

حسن ایروانی^۱٬، محمد جواد جعفری^۳٬، رضوان زنده دل^۴ ، سهیلا خداکریم^۵٬ آتنا رفیعی پور^۴

^۱ دانشکده بهداشت، گروه مهندسی بهداشت حرفه ای، دانشگاه علوم پزشکی سمنان، سمنان، ایران ^۲ دانشکده بهداشت، گروه مهندسی بهداشت حرفهای، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران. ^۳ دانشکده بهداشت، گروه مهندسی بهداشت حرفهای، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران. ^۴ دانشکده بهداشت، گروه مهندسی بهداشت حرفهای، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران. ^۵ دانشکده بهداشت، تروه اپیدمیولوژی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.

^۶ دانشکده بهداشت، گروه مهندسی بهداشتحرفه ای، کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران.

تاریخ دریافت: ۹۶/۷/۲۴، تاریخ پذیرش: ۹۷/۱۲/۱۵

🔳 مِکیدہ

مقدمه: سولفید هیدروژن(H₂S) گازی سمی است که اثرات نامطلوبی بر سلامت انسان و تجهیزات دارد. یکی از روشهای حذف گاز H2S استفاده از بسترهای جاذب است. در مطالعه حاضر به بررسی تأثیر افزودن نانوذرات اکسیدهای آهن Fe₂O₄ و Fe₃O₄ به بستر زئولیتی 5-ZSM بر کارایی حذف H₂S از جریان هوا پرداخته شد.

روش کار: در این تحقیق نانوذرات Fe₂O₃ و Fe₂O₄ به روش تلقیح مرطوب و با نسبتهای وزنی ۳٪ و ۵٪ بر روی بستر زئولیتی ZSM-5 بارگذاری شد و خصوصیات ساختاری بستر با آزمونهای XRD، BET و عکس برداری SEM مورد مطالعه قرار گرفت. سپس غلظتهای ۳۰۰ ۳۰۶، ۹۰ و ۱۲۰ از گاز H₂S در یک سیستم پایلوت و در سه محدوده دمایی ۲۰۰۰، ۲۰۰ و ۳۰۰ تهیه شد و ظرفیت جذب بستر در حذف آلاینده مورد بررسی قرار گرفت.

یافته ها: صحت بارگذاری نانوذرات و ساختار متخلخل بستر با آزمون XRD و SEM مورد تأیید قرار گرفت. آزمون BET نشان داد که بارگذاری نانوذرات اکسید آهن بر روی بستر باعث کاهش سطح ویژه آن میشود امّا افزایش درصد بارگذاری نانوذرات بر روی بستر و افزایش دما از ۱۰۰ به ۲۰۰۳ در این مطالعه زمان رسیدن به نقطه شکست را افزایش داد. بیشترین ظرفیت جذب گاز H₂S نیز برای بستر 5%-SJSH-5/Fe₃O4 در تراکم ۱۳۰۳ و معادل ppm۱۲۰ و معادل ff/۴۹ zeolite

نتیجه گیری: نتایج نشان داد که بار گذاری نانوذرات اکسید آهن بر روی بستر زئولیتی ZSM-5 توانایی حذف گاز H₂S را در دمای بالا بدلیل تأثیر واکنش کاتالیستی افزایش میدهد و بنابراین میتواند بعنوان یک روش مناسب جهت حذف آلایندههای مشابه بکار رود.

ا المات اليدى: زئوليت 5-ZSM، سولفيد هيدروژن، نانوذرات، Fe₃O₄ ا

* پست الكترونيكى نويسنده مسئول مكاتبه: m_jafari@sbmu.ac.ir

سولفید هیدروژن یک گاز سمی است که مواجهه با آن منجر به بروز علائمی مانند تحریک مجاری تنفسی، اثر بر سیستم تناسلی، از کار افتادگی اعصاب بویایی و در غلظت های بالاتر خفگی و مرگ می شود(۱–۲) مواجهه با سولفید هیدروژن در فرایندهای مختلفی اتفاق می افتد که از آن میان می توان به حفاری معادن و تونل ها، صنایع تولید کاغذ، فرایندهای تصفیه گاز و نفت، تأسیسات آب و فاضلاب، محل های انباشت زباله، کشاورزی و ... اشاره کرد(f, ۵). همچنین گاز H_2S علاوه بر اثرات بهداشتی می تواند باعث خوردگی و آسیب به تجهیزات شود (۶, ۷) و از همین رو حذف آن یکی از چالش های موجود در اغلب صنایع درگیر با آن است(۸, ۹). در ابعاد تجاری فرایندهای مختلفی برای حذف سولفید هیدروژن از جریان گاز استفاده می شوند که از آن جمله می توان به شستشوى قليايي/آميني، اكسيداسيون شيميايي، جذب سطحی، بیوفیلتراسیون و اکسیداسیون کاتالیزوری تر اشاره کرد(۱۱, ۱۱) که اغلب این روشها با هزینه و مصرف انرژی زیاد و یا تولید آلودگی ثانویه همراه هستند(۱۲). امروزه جذب سطحى گازها بر روى بسترهاى جاذب يكى از روشهای رایج برای حذف گازها به شمار می رود که به دو شیوه فیزیکی و شیمیایی انجام می شود(۱۴, ۱۴). جاذب های سطحی غالباً از خصوصیات ارزشمندی مانند سطح ويژه بالا، ساختار متخلخل، توزيع يكنواخت خلل و فرج، مقاومت در برابر درجه حرارت های بالا و قابلیت انتخاب پذیری برخوردارند(۱۵). محققین معتقدند که جاذب های جامد توانایی بالایی در تکنولوژی تفکیک گاز دارند(۱۶, ۱۷). زیرا بسترهای متخلخل دارای سطوح ویژه و ظرفیت جذب سطحی بالایی هستند و از همین رو از این بسترها در سیستمهای پالایش هوا جهت جذب سطحی آلاینده های گازی یا ترکیبات معطر بسیار استفاده می شود(۱۸) بسترهای زئولیتی یکی از انواع جاذب های رایج مورد استفاده برای حذف گازها و بخارات می باشد(۱۹). زئولیت ها از دسته بسترهای متخلخل می باشند که از

دیرباز به طور گسترده ای در فرایندهای جذب یا حذف کاتالیستی مورد استفاده قرار گرفته اند(۲۰) و در مطالعات متعدد کارآیی آنها در حذف آلاینده ها مناسب براورد شده است(۲۱–۲۲). فرایند جذب سطحی بر روی بسترهای زئولیتی به عنوان یک روش مؤثر و مقرون به صرفه در حذف الاینده ها از هوا معرفی شده است(۲۴).

زئولیت ها در یک تقسیم بندی به دو گروه زئولیت های طبیعی و زئولیت های سنتز شده تقسیم می شوند(۲۵). در یک تقسیم بندی دیگر، زئولیت ها را بر اساس نسبت Si/Al به دو گروه آبدوست و آبگریز تقسیم می کنند که انتخاب پذیری آنها را به عنوان بستر جاذب و در رقابت با آلاینده مورد نظر تحت تأثیر قرار می دهد(۱۵). زئولیت های با نسبت بالای Si/Al از دسته زئولیت های با پایداری حرارتی بالا و آبگریز هستند که کاربرد آنها را برای محیط های مرطوب و گرم امکانپذیر می سازد(۱۵) تغییر در نسبت Si/Al را با توجّه به نوع کاربری زئولیت می توان در انواع سنتز شده آن انجام داد. زئولیت سنتز شده ZMS-5 از دسته زئولیت های سنتز شده با نسبت بالای Si/Al می باشد که در دهه های اخیر تلاش های زیادی در زمینه اثربخشی بیشتر فرایند جذب سطحی بر روی آن صورت گرفته است(۲۶-۲۹). از جمله اقدامات اصلاحي به منظور افزايش ظرفيت جذب زئوليت ها مي توان به افزودن کاتالیزورهای فلزی بر روی بسترهای آن اشاره کرد(۳۰-۳۳). با پیشرفت نانوتکنولوژی در دهه های اخیر نیز نشان داده شده است که تغییر در اندازه ذرات فلزی می تواند بر خواص شیمیایی، فیزیکی و کاتالیستی آنها مؤثر باشد. اغلب مطالعات موجود به افزایش اثر کاتالیستی ذرات فلزی در ابعاد نانومتریک اشاره کرده اند (۳۴, ۳۵). این در حالی است که رستمی و همکاران در مطالعه خود، كاهش كارآيي جذبي زئوليت كلينو پتيلوليت بارگذاری شده با نانوذرات فلزی اکسید مس را در مقایسه با انواع خام زئولیت برای حذف ترکیبات BTEX از جریان هوا نشان دادند(۲۲) که لزوم مطالعات بیشتر در خصوص تناسب نوع كاتاليزور با آلاينده حذفي را نشان مي دهد.

۴۵

مسن ایروانی و همکاران

از زئولیت ها برای حذف انواع مختلف آلاینده ها در ماتریس های مختلف استفاده شده است که یکی از انواع کاربردهای آن برای حذف گاز سولفید هیدروژن (H_2S) از جریان هوا بوده است (7°) . تا کنون تلاش های زیادی از سوی محققین به منظور حذف گاز سولفید هیدروژن با استفاده از راهکارهای مناسب و مقرون به صرفه صورت گرفته است و هدف مطالعه حاضر نیز بررسی تأثیر اصلاح سطح بستر زئولیت 5-ZSM با نانوذرات فریک (Fe_2O_3) از جریان هوا در و مگنتیت (Fe_3O_4) در حذف گاز H_2S از جریان هوا در نظر گرفته شد.

🔳 روش کار

مطالعه حاضر در سه بخش: ۱. سنتز بسترهای هیبریدی، ۲. تعیین خصوصیات ساختاری بسترهای سنتز شده و ۳. غلظت سازی و تعیین ظرفیت جذب بسترها انجام شد.

بخش اول: سنتز بستر های هیبریدی

در مرحله سنتز بسترهای هیبریدی از زئولیت های نوع 5-ZSM (ساخت کشور چین) با قطر ۲۰/۴-۱ میلیمتر استفاده شد که در سه شکل خام، بارگذاری شده با نانوذره Fe₂O₃ و بارگذاری شده با نانوذره Fe₃O₄ در مطالعه به کار برده شد. نانوذرات مورد مطالعه در ابعاد میانگین ۳۰ نانومتر از شرکت Research Nano materials قبلی با نسبت نانومتر از شرکت ZSM-S میالعات قبلی با نسبت آمریکا خریداری شد و بر اساس مطالعات قبلی با نسبت های وزنی ۳ و ۵ درصد بر روی بستر زئولیتی ZSM-بارگذاری شد(۳۸, ۳۷). به منظور بارگذاری نانوذرات آهن بارگذاری شده مشخصی از نانوذرات متناسب با جرم زئولیت به در نسبت های وزنی مختلف بر روی بستر زئولیتی -ZSM ارلن شیشهای محتوی آب مقطر افزوده شد و با استفاده از دستگاه التراسونیک (مدل S 2000 مدو با استفاده از سوسپانسیون یکنواختی از نانوذرات به مدت ۳۰ دقیقه تهیه شد. سپس جرم مشخصی از زئولیت به سوسپانسیون

نانوذرات افزوده شد و با استفاده از دستگاه شیکر در دمای آزمایشگاه هم زده شد تا نانوذرات درون منافذ و کانالهای زئولیت رسوب کند. به منظور آبگیری بسترهای تهیه شده، از گرمادهی در دمای ۱۰۵ درجه سانتی گراد به مدت ۱۰ ساعت استفاده شد. کلسینه کردن بسترها نیز در کوره آزمایشگاهی با دمای ۴۵۰ درجه سانتی گراد به مدت کوره آزمایشگاهی با دمای ۴۵۰ درجه سانتی گراد به مدت SM-5 _{Fe304-3}, پنج نوع بستر به دست آمده با علائم اختصاری SM-5_{raw}, SSM-5_{Fe304-5} نامگذاری شدند.

بخش دوم: تعیین خصوصیات ساختاری بسترهای سنتز شده

برای تعیین خصوصیت بلورینگی بستر و تایید حضور نانوذرات بر روی بستر از ابزار XRD (Xray) XRD حضور نانوذرات بر روی بستر از ابزار آلمان) در طول موج تابشی ۱/۵۴ انگستروم استفاده شد. بررسی ایزوترم جذب و واجذب نیتروژن، تعیین سطح ویژه و اندازه منافذ بستر با استفاده از دستگاه BET (–Brunauer منافذ بستر با استفاده از دستگاه JET (–Strauer دمای ۷۷/۳ درجه کلوین انجام شد. برای مشاهده سطح و تخلخل بسترها از روش عکس برداری به شیوه SEM Scanning Electron Microscopy- Hitachi su) منافد، ساخت کشور ژاپن) استفاده شد.

بخش سوم: غلظت سازی و تعیین ظرفیت جذب بسترها به منظور مقایسه عملکرد بسترهای هیبریدی سنتز شده در حذف گاز سولفید هیدروژن از یک سیستم پایلوت آزمایشگاهی مستقر در زیر هود آزمایشگاهی، استفاده شد(شکل ۱). نرخ گاز سولفید هیدروژن ورودی به محفظه اختلاط برای تهیّه غلظت های مورد بررسی با استفاده از رگلاتور سوزنی دو مرحله ای(محصول شرکت GENTEC آمریکا) تنظیم شده و غلظتهای ۲۰۹، ۰۶، ۹۰، ۲۰

شکل ۱. پایلوت نمونه برداری (۱: پمپ دمنده هوا ۲: کپسول گاز سولفید هیدروژن ۳: محفظه اختلاط ۴: گرمکن ۵: ترموستات و سیستم کنترل دما ۶: راکتور ۲: پورت های نمونه برداری)

از سولفید هیدروژن در محفظه اختلاط از طریق رقیق سازی با هوای پاک عبوری از ستون سیلیکاژل و زغال فعال تهیه گردید، و اتمسفر تهیه شده با غلظت lit/min۱ به راکتور حاوی بستر تزریق شد.

برای تهیّه سیستم پیش گرمایش و راکتور از لوله استیل ۳۱۶ ضد اسید به طول ۶ متر، یک مدار استوانهای مارپیچ (به ارتفاع ۴۰ سانتیمتر و شعاع ۶ سانتیمتر) استفاده شد. جهت گرمایش این سیستم از المنت سرامیکی با توان مصرفی ۳۵۰۰ وات استفاده گردید. جریان هوا پس از ورود به داخل مدار و انجام پیش گرمایش در مسیر مارپیچ استوانه ای به راکتور در مرکز مدار پیش گرمایش منتقل شد. به منظور کنترل دمای گاز از حسگر گرمایی با ضریب دقت ۱ درصد، در مرکز راکتور استفاده شد و به وسیله ترموستات الکترونیکی تنظیم دما انجام گردید.

برای سنجش غلظت گاز سولفید هیدروژن در بخش ورودی و خروجی راکتور از دستگاه قرائت مستقیم Tiger (ION Co.، انگلستان) با قابلیت اندازه گیری آلاینده در

ومنه غلظتی ۹۳۰۰ - ۰ و حساسیت روش ppm دامنه غلظتی ۵۰۰۰ ppm و حساسیت روش eV Krypton-Photo ال. مجهز به لامپIonization Detector lamp استفاده گردید و غلظت گاز سولفید هیدروژن در فواصل زمانی مشخص از طریق پورت های نمونه برداری پیش بینی شده بر روی ورودی و خروجی راکتور اندازه گیری شد. دستگاه قرائت مستقیم پیش از استفاده توسط غلظتهای استاندارد تهیه شده از سولفید هیدروژن با درصد خلوص ۹۹٪ کالیبره شد.

ظرفیت جذبی راکتور خالی فاقد بستر به منظور بررسی اثر تداخلی بدنه راکتور در فرایند حذف آلاینده تعیین شد. سپس ظرفیت جذبی بسترهای سنتز شده در حذف غلظت های ۳۰ و ۳۰ مr۰ ۹۰، ۱۲۰ از گاز H_2S و در سه دمای Ω° ۱۰۰، ۲۰۰ و ۳۰۰ مورد بررسی قرار گرفت. برای این منظور ۵۰۰ میلی گرم از هر یک از بسترهای سنتز شده در بخش داخلی راکتور قرار گرفت و گاز H_2S در ا

فصلنامه بهداشت و ایمنی کار ، جلد ۱۰/ شماره ۱/ بهار ۱۳۹۹

٧٩

شكل ٢. تصاوير SEM: (الف) بستر خام ZSM-5، (ب) بستر 🛛 وZSM-5، (ج) بستر SEM-5، (ج) بستر SEM-5/، (ج) بستر ZSM-5/، (ج) بستر

بخش خروجی راکتور تا زمان رسیدن به نقطه شکست آزمون های آماری جاذب (معادل خروج ۵٪ از غلظت ورودي آلاينده از بخش خروجی راکتور) مورد پایش قرار گرفت. سپس ظرفیت جذبی بسترهای مورد مطالعه در نقطه شکست جاذب با استفاده از رابطه ۱ برآورد گردید(۴۴).

$$q = \frac{Q}{m} \int_{t=0}^{t} (C_0 - C_t) dt \tag{1}$$

که در آن q: ظرفیت جذب جاذب در نقطه شکست(mg/g)، m: جرم جاذب(g)، Q: دبی هوای عبوری از بستر جاذب(m³/min)، t: زمان(min)، C₀. غلظت آلاینده ورودی(mg/m³) و Ct: غلظت در زمان (mg/m³)t بود.

نتایج به دست آمده از مطالعه حاضر با استفاده از نرم افزار آماری SPSS نسخه ۱۶ و آزمون آماری Student Sample T-Test به منظور مقایسه حالت های مختلف مطالعه، مورد تجزیه و تحلیل قرار گرفت.

🔳 یافته ها

تصاویر SEM و XRD نشان داد که بستر زئولیتی ZSM-5 دارای ساختار کروی و بلوری می باشد(شکل ۲). مساحت سطحی بستر زئولیتی مورد مطالعه نیز با استفاده از ابزار BET به دست آمد و نتایج نشان داد، بارگذاری نانوذرات اکسید آهن مگنتیت بر روی آن باعث کاهش سطح ویژه، حجم و قطر حفرات بستر می شود(جدول ۱).

میانگین قطر منافذ (A ₀)	حجم کلی منافذ (cm ³ /g)	مساحت ویژه (m ² /g)	نمونه
۲۱/۸۳	• / ٢ •	360/4	ZSM-5
T 1/V9	•/\٨	377/20	ZSM-5/Fe3O4_5%

جدول ۱. ویژگی های مورفولوژیک بستر زئولیتی ZSM-5

شکل ۳) ایزوترم جذب-واجذب گاز نیتروژن در بستر ZSM-5.

مناسب نانوذرات اکسیدهای آهن بر روی بستر زئولیت خام بود(۴۵, ۴۶). همچنین وجود ساختار بلوری شکل بستر پس از بارگذاری نانوذرات اکسید آهن نیز با استفاده از نتایج آزمون XRD مورد تأیید قرار گرفت(شکل ۴).

برای بررسی اثر درصد بارگذاری نانوذرات بر ظرفیت جذب، بسترهای آماده شده در دمای بهینه ℃ ۲۰۰ و غلظت میانه ۶۰ ppm مورد بررسی قرار گرفتند و نتایج نشان داد افزایش درصد بارگذاری نانوذرات اکسید آهن بر روی بستر از ۳ به ۵ درصد برای هر دو نوع نانوذره مورد بررسی، سبب افزایش ظرفیت جذب بستر و در نتیجه افزایش زمان رسیدن به نقطه شکست می شود (05)/0≥ P) (شکل۵ – الف) و از همین رو دو نوع بستر شکل ۳ ایزوترم جذب و واجذب بستر -ZSM 5 را نشان می دهد. ایزوترمهای جذبی بستر زئولیت مورد بررسی نشان می دهد که در فشار نسبی پایین (P/P₀<0.1) حجم گاز نیتروژن جذب شده توسط بستر در حدود ۸۰ سانتیمتر مکعب بر گرم جاذب می باشد، همچنین ایزوترم بستر 5-ZSM مورد استفاده بدر گروه یک IUPAC دسته بندی می شود که این نوع ایزوترم به ندرت در بستر های غیر متخلخل دیده می شود(شکل ۳).

وجود پیکهای مربوط به نانوذرات اکسید مگنتیت در محدوده (۳۳/۵۲، ۶۴/۳، ۲۵/۴۴، ۶۲/۵ ،۳۳/۴۲) و پیکهای مربوط به اکسید فریک در محدوده (۲۵/ ۶۲/۹۴ (ی ارکذاری XRD نمایانگر بارگذاری

فصلنامه بهداشت و ایمنی کار ، جلد ۱۰/ شماره ۱/ بهار ۱۳۹۹

شکل ۴. الگوی XRD برای بستر ZSM-5ک[x]در حالت خام و بارگذاری شده با نانوذرات اکسید آهن (Fe₂O₄ و Fe₂O₄) با درصد بارگذاری ۵٪

🔳 بحث

الگوهای XRD و تصاویر SEM ماهیت متخلخل و بلوری شکل بستر زئولیتی S-MZ و نیز بارگذاری صحیح نانوذرات اکسید آهن را بر روی بستر SM-5 تایید کرد. Tao و همکاران نیز در مطالعه خود به ماهیت بلوری شکل و سطح متخلخل بستر S-MZS از طریق تشخیص منافذ میکرو بر روی آن اشاره کردند(۴۷). در مطالعه Ramirez و همکاران و SM-6 و همکاران نیز از روش XRD به ترتیب برای تشخیص بارگذاری نانوذرات آهن بر روی بستر زئولیت سنتزی استفاده شد که نتایج حاصل از این پژوهش ها نشان داد که پس از بارگذاری نانو ذرات پیک های مربوط به نانو ذرات بر روی بسترهای سنتز شده ظاهر شده که خود نشانه حضور و بارگذاری موفقیت آمیز نانو ذرات بود (۴۸, ۴۹).

سطح جاذب و وجود منافذ میکرو یک فاکتور مهم در ارتقای فعالیت های کاتالیستی محسوب می شود که معمولاً در نتیجه فرایند بارگذاری کاتالیزورها از ZSM-5_{Fe304-5} و ZSM-5_{Fe203-5}% به عنوان بسترهای بهینه برای بررسی تأثیر دما و غلظت بر فرایند حذف گاز سولفید هیدروژن انتخاب شدند.

بررسی تاثیر دما بر ظرفیت جذبی بسترهای بهینه در غلظت P۰ ppm از گاز سولفیدهیدروژن در سه محدوده دمایی 0 ۲۰۰، ۲۰۰ و ۳۰۰ مورد بررسی قرار گرفت(شکل 0 – ب) و نتایج نشان داد که زمان رسیدن به نقطه شکست با افزایش دما از 0 ۲۰۰ به ۳۰۰ افزایش می یابد($^{0}O_{2} = 0$) از همین رو بنابراین دمای 0 ۳۰۰ به عنوان دمای بهینه انتخاب شد. مقایسه ظرفیت جذب برای بسترهای $^{0}S-_{Fe304-5}$ و $^{0}S-_{Fe203-5}$ در بهینه 0 ۳۰۰ نیز نشان داد که بسترهای پوشش داده نقطت های مختلف از گاز سولفید هیدروژن و در دمای بهینه 0 ۳۰۰ نیز نشان داد که بسترهای پوشش داده شده با نانوذرات اکسید مگنتیت از کارایی بالاتری در جذف سولفید هیدروژن برخوردارند و بیشترین ظرفیت جذبی آن نیز در غلظت M10 pm از گاز 0 ۲۰۰ از گاز 0 ۹۰دل رفیادل

شکل ۵: (الف) منحنی شکست بستر های کاتالیستی با درصدهای بارگذاری مختلف نانو ذرات آهن (دما: C° ۲۰۰ - دبی lit/min۱ - غلظت: ppm۶۰). ب) منحنی شکست بسترهای کاتالیستی در دماهای مختلف راکتور(دما: C° ۲۰۰،۲۰۰، ۳۰۰ - دبی lit/min۱ – غلظت:). ج) ظرفیت جذب بسترهای کاتالیستی با درصد بهینه بارگذاری نانوذرات آهن و دمای بهینه (دما: C° ۳۰۰ - دبی lit/min۱ – غلظت:

میزان آن کاسته می شود(۵۰). وجود منافذ میکرو بر روی بستر 5-ZSM در مطالعه حاضر با توجه به ایزوترم جذب و واجذب گاز نیتروژن بر روی بستر و مقایسه آن گرفت. محققین دیگر نیز در مطالعات خود عنوان کرده اند که افزایش جذب و واجذب نیتروژن بر روی بسترها به دلیل بالا بودن وجود منافذ میکروپور بر روی بستر می باشد(۵۱, ۵۲) که با ایزوترم لانگموئر در الگوی نوع اول بستر و قابلیت جذب بالای گاز نیتروژن در فشارهای نسبی پائین میباشد(۵۵). نتایج به دست آمده از آزمون

BET در مطالعه حاضر نیز نشان داد که که اندازه منافذ بستر پس از بارگذاری نانوذرات اکسیدهای آهن و فرایند کلسیناسیون از میزان ۲۱/۸۳ به ۲۱/۷۹ آنگستروم کاهش پیدا کرد. محققین نیز در مطالعات خود اشاره کرده اند که مساحت ویژه بسترهای زئولیتی در هنگام بارگذاری نانوذره بر روی آنها به علت توانایی نانوذرات در مسدود ساختن حفرات زئولیت کاهش می یابد(۵۳) که با مطالعه حاضر همخوانی داشت. تاجی زادگان و همکاران در مطالعه خود بارگذاری بستر آلومینا به وسیله نانوذرات اکسید روی را عامل کاهش سطح بستر معرفی کردند و نشان دادند که با افزایش درصد بارگذاری نانوذرات، سطح

μı

مسن ایروانی و همکاران

ویژه بستر و حجم حفرات آن کاهش بیشتری می یابد که مشابه با نتایج به دست آمده در مطالعه حاضر بود(۵۴). نتایج حاصل از آزمون BET در مطالعه acomon و همکاران نشان داد که افزایش درصد بارگذاری نانوذرات آهن بر روی بسترهای زئولیتی تا نسبت Si/Fe معادل ۲۰ باعث افزایش و در نسبت های بیشتر از آن باعث کاهش مساحت ویژه بستر می شود(۵۵).

استفاده از عناصر کاتالیستی بر روی بسترهای خام زئوليتى باعث افزودن فرايند حذف كاتاليستى به فرايند جذب سطحی بسترهای خام می شود و کارایی بسترها را در حذف آلاینده ها ارتقا می بخشد. نتایج مطالعه حاضر نیز نشان داد که بستر خام زئولیت ZSM-5 در مقایسه با انواع بارگذاری شده آن با نانوذرات اکسید آهن مگنتیت و فریک سریعتر به نقطه شکست می رسد. همچنین نتایج نشان داد که افزایش درصد بارگذاری نانوذرات بر روی بستر، باعث افزایش فعالیت کاتالیستی و کارآیی حذف سولفید هیدروژن در دماهای بالا می شود و بین دو نوع كاتاليزور مورد مطالعه، نانوذرات اكسيد اهن مگنتيت در مقایسه با نانوذرات اکسید آهن فریک از کارایی بالاتری در حذف سولفید هیدروژن برخوردار بودند. در مطالعهXie و همکاران نیز از بسترهای زئولیتی آغشته به میکروذرات اکسید آهن برای حذف گازهای سولفید هیدروژن و كربونيل سولفيد از خروجي يك منبع سوخت زغالسنگ با دمای بالا استفاده شد و نتایج نشان داد که استفاده از اکسیدهای آهن بر روی جاذب می تواند سبب بهبود ظرفیت جذبی بستر شود و با کاهش اندازه ذرات اکسید آهن عملکرد بستر افزایش بیشتری خواهد داشت(۵۶).

نتایج پژوهش حاضر نشان داد که زمان رسیدن به نقطه شکست با افزایش دما افزایش می یابد. دانش موجود در زمینه سینتیک شیمیایی نیز نشان می دهد که سرعت واکنش سولفید هیدروژن با اکسیدهای فلزی در هنگام افزایش دمای واکنش افزایش می یابد(۵۰, ۵۷). یافته های یک مطالعه در سال ۲۰۱۴ نشان داد که افزایش دمای سولفید هیدروژن تا ۲^o ۶۵۰ منجر به افزایش

کارایی بستر ETS-2 آغشته به ذرات فلزی نیترات مس در حذف آن می شود(۵۸). در مطالعه Liu و همکاران نیز از بستر زئولیت ZSM-5 آغشته به نانو ذرات اکسید منگنز و سریم برای حذف سولفید هیدروژن استفاده شد و نتایج نشان داد که افزایش دما تا C° ۷۵۰ سبب افزایش فعالیت کاتالیستی و ظرفیت جذبی و نیز افزایش زمان رسیدن به نقطه شکست میشود(۵۰) که نتایج مطالعات مذکور، یافته های پژوهش حاضر را مورد تأیید قرار می دهد.

ظرفیت جذب بسترهای مورد پژوهش در محدوده غلظتی ۳۰ppm تا ۱۲۰ نشان داد که افزایش غلظت، زمان رسیدن به نقطه شکست را افزایش می دهد. مطالعات نشان می دهند که در غلظت های بالا نیروی رانش ناشی از فشار جزئی آلاینده در فاز گاز افزایش می یابد و در نتیجه احتمال توزیع آلاینده در بین منافذ جاذب افزایش یافته و میزان جذب نیز زیاد می شود (۶۰–۵۸).

نتایج مطالعه حاضر نشان داد که افزایش دما تا نتایج مطالعه حاضر نشان داد که افزایش دما تا زئولیتی بارگذاری شده با نانوذرات اکسید آهن اثر مثبت دارد و می تواند باعث افزایش جذب آلاینده بر روی بستر شود. از نظر سینتیک شیمیایی نیز سرعت واکنش سولفید هیدروژن با اکسیدها فلزی در نتیجه افزایش دما سولفید هیدروژن با اکسیدها فلزی در نتیجه افزایش دما تا محدوده دمای بهینه نانوذرات مورد استفاده افزایش می یابد و در صورتیکه افزایش دما بیش از دمای بهینه نانوذرات مورد استفاده باشد، سبب پخته شدن بستر و کاهش کارایی می شود(۵۰, ۵۷, ۸۵). داده های به دست آمده در مطالعه حاضر بیانگر این مطلب است که دمای آمده در مطالعه حاضر بیانگر این مطلب است که دمای فریک کمتر از دمای پخته شدن بستر می باشد و می فریک کمتر از دمای پخته شدن بستر می باشد و می

🔳 نتيجه گيرى

در مطالعه حاضر به بررسی فرایند حذف غلظت های مختلف سولفید هیدروژن توسط زئولیت SM-5 بارگذاری شده با نانوذرات اکسید اهن مگنتیت و فریک موجود در فرایندهای مشابه پرداخته شود.

🔳 تشکر و قدردانی

این مقاله برگرفته از پایان نامه آقای حسن ایروانی به راهنمایی دکتر محمد جواد جعفری می باشد. نویسندگان وظیفه خود می دانند از دانشگاه علوم پزشکی شهید بهشتی برای کمک های مالی و فنی طرح تشکر و سپاسگزاری نمایند. طرح پایان نامه قبل از اجرا در کمیته سازمانی اخلاق در پژوهش دانشکده بهداشت و ایمنی دانشگاه علوم پزشکی شهید بهشتی مورد تصویب قرار گرفت.

REFERENCES

- Dorman DC, Moulin FJ-M, McManus BE, Mahle KC, James RA, Struve MF. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicological Sciences. 2002;65(1):18-25.
- Fischer L, Gracki J, Long D, Wolff G, Harrison K. Health Effects of Low-Level Hydrogen Sulfide in Ambient Air. Michigan Environmental Science Board, a science report to Governor John Engler, 43 pp. Accessible at: www. michigan.gov/documents/h2srept_3700_7.pdf.: Report of the Hydrogen Sulfide Investigation Panel, Michigan Environmental Science Board; 2000.
- Miranbeigi AA, Yousefi M, Abdouss M. Room temperature imidazolium-based ionic liquids as scavengers for hydrogen sulfide removal of crude oil. Analytical Methods in Environmental Chemistry Journal. 2018;1(01):11-22.
- 4. EOHP, 2006: Ambient air guidelines for hydrogen sulphide. EOHP - Environmental & Occupational Health Program Division of Environmental Health, Maine Center for Disease Control & Prevention, Maine Department of Health & Human Services, 15pp. Website: www.maine.gov/dep/waste/publications/documents/ ambientairguidelines.pdf.
- Lambert TW, Goodwin VM, Stefani D, Strosher L. Hydrogen sulfide (H 2 S) and sour gas effects on the eye. A historical perspective. Science of the total environment.

پرداخته شد و نتایج نشان داد استفاده از زئولیت -ZSM 5 با پوشش نانوذرات اکسید آهن و به خصوص نانوذرات اکسید آهن مگنتیت می تواند روش مناسبی برای حذف سولفید هیدروژن در دماهای بالا باشد. همچنین با توجه به یافتههای مطالعه افزایش درصد بارگذاری نانوذرات از ۳ به ۵ درصد به دلیل افزایش جایگاه های فعال کاتالیزوری می تواند سبب افزایش فعالیت سولفورزدایی شود. بنابراین پیشنهاد می شود در مطالعات آتی به بررسی کارایی بسترهای زئولیتی در میزان بارگذاری های مختلف از نانوذرات فلزی گوناگون برای حذف سولفید هیدروژن یا سایر آلاینده های

2006;367(1):1-22.

- Elshiekh T, Elmawgoud H, Khalil S, Alsabagh A. Simulation for Estimation of Hydrogen Sulfide Scavenger Injection dose rate for treatment of crude oil. Egyptian Journal of Petroleum. 2015;24(4):469-74.
- Sun W, Nešic S. A mechanistic model of uniform hydrogen sulfide/carbon dioxide corrosion of mild steel. Corrosion. 2009;65(5):291-307.
- Pandey SK, Kim K-H. A review of methods for the determination of reduced sulfur compounds (RSCs) in air. Environmental science & technology. 2009;43(9):3020-9.
- Vahid A. Determination of H2S in Crude Oil via a Rapid, Reliable and Sensitive Method. Analytical Methods in Environmental Chemistry Journal. 2019;2(2):37-44.
- Lee E-K, Jung K-D, Joo O-S, Shul Y-G. Influence of iron precursors on catalytic wet oxidation of H 2 S to sulfur over Fe/MgO catalysts. Journal of Molecular Catalysis A: Chemical. 2005;239(1):64-7.
- Gabriel D, Cox HH, Deshusses MA. Conversion of full-scale wet scrubbers to biotrickling filters for H 2 S control at publicly owned treatment works. Journal of environmental engineering. 2004;130(10):1110-7.
- Wang X, Ma X, Xu X, Sun L, Song C. Mesoporousmolecular-sieve-supported polymer sorbents for removing H 2 S from hydrogen gas streams. Topics in catalysis. 2008;49(1-2):108.
- Theodore L. Air pollution control equipment calculations: John Wiley & Sons; 2008.

فصلنامه بهداشت و ایمنی کار ، جلد ۱۰/ شماره ۱/ بهار ۱۳۹۹

- Ghahri A, Golbabaei F, Vafajoo L, Mireskandari SM, Yaseri M, Shahtaheri SJ, et al. Effects of acid modification of activated charcoal on adsorption of Sevoflurane as an anesthesia gas. Health and Safety at Work. 2018;8(2):103-20.
- Kulprathipanja S. Zeolites in industrial separation and catalysis: Wiley Online Library; 2010.
- Asilian H, Mortazavi S, Kazemian H, Phaghiehzadeh S, Shahtaheri S, Salem M. Removal of ammonia from air, using three Iranian natural zeolites. Iranian J Publ Health. 2004;33(1):45-51.
- Jamshidzadeh C, Shirkhanloo H. A new analytical method based on bismuth oxide-fullerene nanoparticles and photocatalytic oxidation technique for toluene removal from workplace air. Analytical Methods in Environmental Chemistry Journal. 2019;2(01):73-86.
- Shangol AB, Mortazavi SB, Asilian H, Kazemian H. Elimination of toluene vapours using natural zeolite treated by copper oxide. Journal of Kermanshah University of Medical Sciences (J Kermanshah Univ Med Sci). 2013;17(7):423-30.
- Neshat AA, Ramazani AA, Heidari MR, Soleimani N, Ahmadi A, Sheikhi Z, et al. Investigation of Cadmium removal efficiency by Clinoptilolite from aqueous solutions. Journal of Zabol University of Medical Sciences and Health Services. 2013;5(3):32-8[Persian.[
- Čejka J, Morris RE, Nachtigall P. Zeolites in Catalysis: Properties and Applications: Royal Society of Chemistry; 2017.
- Deng H, Yi H, Tang X, Yu Q, Ning P, Yang L. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites. Chemical Engineering Journal. 2012;188:77-85.
- 22. Rostami R, Jonidi Jafari A, Rezaee Kalantari R, Gholami M. Survey of modified clinoptilolite zeolite and cooper oxide nanoparticles-containing modified clinoptilolite efficiency for polluted air BTX removal. Iranian Journal of Health and Environment. 2012;5(1):1-8[Persian].
- Amooey AA, Amouei A, Tashakkorian H, Mohseni SN. Performance of Clinoptilolite Zeolite in Removal of Dexamethasone from Aqueous Solutions. Journal of Mazandaran University of Medical Sciences. 2016;25(133):128-37[Persian.]
- 24. Ganjegunte G, Vance G, Gregory R, Surdam R, editors. Utilization of zeolite for reducing sodium and salt

concentrations in salinesodic coalbed natural gas waters. Book of Abstracts; 2006.

- Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in polymer science. 2005;30(1):38-70.
- 26. Ulla M, Mallada R, Coronas J, Gutierrez L, Miró E, Santamaria J. Synthesis and characterization of ZSM-5 coatings onto cordierite honeycomb supports. Applied Catalysis A: General. 2003;253(1):257-69.
- Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J. Photocatalytic discolorization of methyl orange solution by Pt modified TiO 2 loaded on natural zeolite. Dyes and Pigments. 2008;77(2):327-34.
- Yurekli Y. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. Journal of hazardous materials. 2016;309:53-64.
- Zhan Y, Zhu Z, Lin J, Qiu Y, Zhao J. Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite. Journal of Environmental Sciences. 2010;22(9):1327-34.
- Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chemical reviews. 2007;107(7):2821-60.
- Lu AH, Schüth F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Advanced Materials. 2006;18(14):1793-805.
- 32. Hernandez M, Corona L, Gonzalez A, Rojas F, Lara V, Silva F. Quantitative study of the adsorption of aromatic hydrocarbons (benzene, toluene, and p-Xylene) on dealuminated clinoptilolites. Industrial & engineering chemistry research. 2005;44(9):2908-16.
- 33. Sun Y, Prins R. Hydrodesulfurization of 4, 6-Dimethyldibenzothiophene over Noble Metals Supported on Mesoporous Zeolites. Angewandte Chemie International Edition. 2008;47(44):8478-81.
- 34. An K, Somorjai GA. Nanocatalysis I: Synthesis of Metal and Bimetallic Nanoparticles and Porous Oxides and Their Catalytic Reaction Studies. Catalysis Letters. 2015;145(1):233-48.
- 35. Wang L, Zhang J, Yi X, Zheng A, Deng F, Chen C, et al. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. Acs Catalysis. 2015;5(5):2727-34.
- 36. Cosoli P, Ferrone M, Pricl S, Fermeglia M. Hydrogen

sulphide removal from biogas by zeolite adsorption: Part I. GCMC molecular simulations. Chemical Engineering Journal. 2008;145(1):86-92.

- Wang X, Sun T, Yang J, Zhao L, Jia J. Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles. Chemical Engineering Journal. 2008;142(1):48-55.
- 38. Rangkooy HA, Pour MN, Dehaghi BF. Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air. Korean Journal of Chemical Engineering. 2017;34(12):3142-9.
- 39. Zhao SY, Lee D-G, Kim C-W, Cha H-G, Kim Y-H, Kang Y-S. Synthesis of magnetic nanoparticles of Fe 3 O 4 and CoFe 2 O 4 and their surface modification by surfactant adsorption. Bulletin of the Korean Chemical Society. 2006;27(2):237-42.
- Ko T-H, Chu H, Chaung L-K. The sorption of hydrogen sulfide from hot syngas by metal oxides over supports. Chemosphere. 2005;58(4):467-74.
- 41. Wang C-H, Lin S-S, Hwang W-U, Weng H-S. Supported transition-metal oxide catalysts for catalytic reduction of SO2 with CO as a reducing agent. Industrial & engineering chemistry research. 2002;41(4):666-71.
- Hong S-S, Lee G-H, Lee G-D. Catalytic combustion of benzene over supported metal oxides catalysts. Korean Journal of Chemical Engineering. 2003;20(3):440-4.
- Rostami R, Jonidi jafari A. Effect of Zero-Valent Iron Nanoparticles on VOCs Removal from Air with a Modified Zeolite Bed. Journal of Environmental Studies. 2013;39(3):59-65.
- 44. Golbabaei F, Rahmanzadeh E, Moussavi G, Baneshi M. Fixed bed adsorption of hexavalent chromium onto natural zeolite from air stream. Health and Safety at Work. 2014;4(2):1-14[Persian]
- 45. Sarkar S, Mondal A, Dey K, Ray R. Magnetic memory in nanocrystalline α-Fe 2 O 3 embedded in reduced graphene oxide. RSC Advances. 2015;5(99):81260-5.
- Popescu RC, Andronescu E, Vasile BŞ, Truşcă R, Boldeiu A, Mogoantă L, et al. Fabrication and Cytotoxicity of Gemcitabine-Functionalized Magnetite Nanoparticles. Molecules. 2017;22(7):1080.
- Tao Y, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society. 2003;125(20):6044-5.

- Pérez-Ramírez J, Groen J, Brückner A, Kumar MS, Bentrup U, Debbagh M, et al. Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis. 2005;232(2):318-34.
- Oliveira LC, Petkowicz DI, Smaniotto A, Pergher SB. Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Research. 2004;38(17):3699-704.
- Liu D, Zhou W, Wu J. CeO 2–MnOx/ZSM-5 sorbents for H 2 S removal at high temperature. Chemical Engineering Journal. 2016;284:862-71.
- Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry. 1985;57(4):603-19.
- Bae YS, Yazaydın AÖ, Snurr RQ. Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores. Langmuir. 2010;26(8):5475-83.
- Theodore L. Air Pollution Control Equipment Calculations. United States of America: John Wiley & Sonsp; 2008. 184-246 p.
- 54. Tajizadegan H, Rashidzadeh M, Jafari M, Ebrahimi-Kahrizsangi R. Novel ZnO–Al 2 O 3 composite particles as sorbent for low temperature H 2 S removal. Chinese Chemical Letters. 2013;24(2):167-9.
- Reyes-Carmona Á, Soriano MD, Nieto JML, Jones DJ, Jiménez-Jiménez J, Jiménez-López A, et al. Iron-containing SBA-15 as catalyst for partial oxidation of hydrogen sulfide. Catalysis today. 2013;210:117-23.
- Xie W, Chang L, Wang D, Xie K, Wall T, Yu J. Removal of sulfur at high temperatures using iron-based sorbents supported on fine coal ash. Fuel. 2010;89(4):868-73.
- Zhang Z, Liu B, Wang F, Li J. Fabrication and Performance of x Mn y Ce/Hexagonal Mesoporous Silica Sorbents with Wormhole-Like Framework for Hot Coal Gas Desulfurization. Energy & Fuels. 2013;27(12):7754-61.
- 58. Paydar P, Faghihi Zarandi A. Air Pollution Method: A new method based on ionic liquid passed on mesoporous silica nanoparticles for removal of manganese dust in the workplace air, Analytical Methods in Environmental Chemistry Journal. 2019; 2 (1): 5-14.
- 59. Yazdanbakhsh F, Bläsing M, Sawada JA, Rezaei S, Müller

مسن ایروانی و همکاران

M, Baumann S, et al. Copper exchanged nanotitanate for high temperature H2S adsorption. Industrial & Engineering Chemistry Research. 2014;53(29):11734-9.
60. Rezaei F, Moussavi G, Riyahi Bakhtiari A, Yamini Y.

Toluene adsorption from waste air stream using activated carbon impregnated with manganese and magnesium metal oxides. Iranian Journal of Health and Environment. 2016;8(4):491-508[Persian].